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Photoactivation profiles. Sharp axial borders versus Gaussian profile 

 

To derive the solutions to Eqs. 2 and 5 one needs to define the initial conditions for 

[TF](z,t=0) and [TB](z,t=0). These are given by the fluorescence distribution along the 

cellular process directly after photoactivation (photoactivation profile). In the experiment the 

laser flash creates a Gaussian photoactivation profile with a characteristic length 2. 

However, a profile with sharp axial borders (i.e. when the fluorescence is constant in z[-,] 

and abruptly goes to zero beyond this range) serves as a good approximation as validated by 

subsidiary numerical simulations employing the Freefem++ partial differential equation 

solver (53). More specifically, two types of photoactivation profiles were tested: a cylindrical 

profile with sharp axial borders 
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and a profile where the fluorescence intensity along the axial line had a slightly modified 

Gaussian distribution 
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The recording profile was the same in both cases, namely, a cylinder of diameter 2R and of 

characteristic length 2. The FDAP curves for both cases were calculated for a wide range of 

parameters and compared by calculating the sum of squared residuals which did not exceed 

the value of 10
-2

. 

 

Calculation of the validity areas for the system Eq. 2 

 

To define parametric borders where one approximation can be considered as being valid and 

another as invalid, we calculated their areas of validity as follows. For each of the special 

cases the respective FDAP transient was calculated. The value D was fixed and the reaction 

rates were varied over a wide range (from 10
-4

 to 10
4
) on a log scale. Each FDAP was 

sampled over M = 112 time intervals, and the mean-square deviation from the full numerical 
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solution (res
2
) was calculated as   .)()(
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ifullisimplified tFDAPtFDAPres  A deviation less 

than 0.01 was considered as acceptable. The validity of the simplified solutions was also 

confirmed by Monte Carlo simulations of FDAP transients and subsequent fitting by the 

respective approximations (see the section Monte Carlo simulations further and Fig. S1). 

 

FDAP fitting and error analysis 

 

Analysis of FDAP transients was performed with self-written python-based routines (54). The 

routines included three blocks. The first block served for the numerical Laplace inversion of 

the full models and the simplified regimes for a given set of the system parameters. For the 

inversion we made use of the algorithm developed in (55). This algorithm is relatively simple 

and produces accurate transforms for Laplace functions of different complexity. The second 

block of the routines corresponded to the least square analysis. For this we used a simple 

brute-force mapping procedure to approximately minimize the 2
-value in the parametric 

space , i.e. 
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where f(t) represents the average of several experimental curves sampled in a time set {ti} 

together with its standard deviation (t), FDAP(t,) is a desired theoretical curve also 

sampled in {ti}, and  is an arbitrary vector from . The minimization procedure consisted in 

ordered discretization of the parametric space and subsequent finding a vector 
*
 that 

minimizes 2
-value in Eq. S.3. The discretization of the (k

*
on, koff)-plane was always done with 

a 0.01 increment on a log scale. The diffusion constant space was discretized with a 0.01 

increment on a linear scale. We also used parallel computing tools to reduce the total 

calculation time. 

 To compute 95% confidence intervals of the estimated parameters 
*
 we employed the 

formulae for the nonlinear data fitting given in (56). The algorithm consisted of the following 

steps 1) finding 
*
 which approximately minimizes the 2

-value in Eq. S.3, 2) calculating 

residuals between f(t) and the desired theoretical curve as follows resi = [f(ti) - 

FDAP(ti,
*
)]/(ti), 3) calculating the degrees of freedom, df, as df = n - np - 1, where n is the 

number of time steps, and np is the number of fitting parameters, 4) calculating the estimated 

residual variance as s
2
 = res

2
/df, 5) calculating the estimated coefficient variance as V = s

2
 

(J
T
 J)

-1
, where Jij = FDAP(ti,)/j is the Jacobian and the indices i and j denote the time 

index and the parameter index within , respectively. Finally, the upper and lower confidence 

bounds were calculated as (DV)
1/2

 F
-1

(0.95  df), where F
-1

(p  k) is the inverse of the 

Student’s t-cumulative distribution function with k degrees of freedom and the corresponding 

probability p, and DV a vector composed of the diagonal elements of V. The calculation of the 

confidence intervals, as well as subsidiary operations, was implemented in the third block of 

the routines. 

 

Derivation of the general solution to the reaction-diffusion system Eq. 2 

 

Equation 2 describes the diffusion and first-order-reaction kinetics of a molecule (here tau) in 

a homogeneous cylindrical space. We assume that the diffusion is restricted to the free state. 
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Before the activating laser flash is fired, there is no tau fluorescence, tau is in equilibrium 

with its binding sites in the photoactivation region, and its concentrations in the free, [TF]eq, 

and bound, [TB]eq, states are equilibrium concentrations. The laser flash activates a subset of 

molecules that is then detectable. At the initial moment (directly after the photoactivation) the 

concentrations of visible free, [TF](z,t=0), and bound, [TB](z,t=0), molecules within the 

photoactivation region z[-, ] become [TF]eq and [TB]eq, respectively, and remain zero 

elsewhere. A standard way of finding analytical solutions of partial differential equations for 

non-periodic problems like Eq. 2 is an integral transform, e.g., the Laplace transform, i.e. 
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)exp()()( dtpttfpf , where f(t) is an arbitrary function defined for all real non-negative 

numbers t ≥ 0 and )( pf  is a function of a complex argument p. In the Laplace space linear 

differential operators turn to algebraic operations. This reduces the system of partial 

differential equations to a system of ordinary differential equations. The inverse Laplace 

transform of the final solution yields the desired time function but may not always be readily 

derived. 

Applying the Laplace transform to Eq. 2 and bearing in mind the initial conditions yield 
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By rearranging the terms in Eq. S.6 and substituting the expression for ]TB[  into Eq. S.5 we 

obtain 
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where q
2
 = (p/D)(1 + k

*
on/(koff + p)) and V(z) = ([TF](z,t=0)/D)(1 + k

*
on/(koff + p)). In the most 

general case Eq. S.7 represents the standard inhomogeneous Helmholtz equation that 

frequently occurs in problems of mathematical physics. In a simple one-dimensional case it 

could also describe a driven harmonic oscillator without damping. It is intuitively obvious that 

the solution to Eq. S.7 should have exponentially decaying tails as z  + and be 

continuously symmetrical everywhere in the real one-dimensional coordinate space with 

respect to the point z = 0. It should also contain a particular solution within the 

photoactivation region. Hence, we attempt a solution of the following form 
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where the constants C1 and C2 are to be determined using the requirement that the function 

]TF[ (z,p) together with its first spatial derivative must be continuous everywhere on the Oz 

axis and particularly at z = . This requirement yields 
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Hereafter, we compute the expression for the averaged intensity within the photoactivation 

region. The Laplace image is then as follows 

,),(]TB[),(]TF[)( pzpzpFDAP   (S.12) 

where <…>  
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
 dz21  is the spatial average over the photoactivation region. The only 

term in Eq. S.12 that has to be averaged is ]TF[ (z,p) as the expression for ]TB[ (z,p) can be 

easily expressed in terms of ]TF[ (z,p) from Eq. S.6. Thus, it is sufficient to calculate 
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and to then substitute it into Eq. S.12. Hence, one obtains Eq. 4 (see the main text). 

 

Derivation of the simplified solutions 

 

Here we discuss the simplified regimes arising when restrictions on the parameters D, , k
*

on 

and koff are imposed. The derivations partly resemble those in (18, 19), except that the 

geometry of the problem under consideration is one-dimensional. 

 

Pure diffusion 

 

Pure diffusion denotes the case when the concentration of free molecules is much larger than 

that of bound molecules, i.e., [TF]eq >> [TB]eq. This assumption imposes limitations on the 

on- and off-rates as follows from Eq. 3, namely, k
*

on/koff << 1. Hence, Eq. 4 transforms to 
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Equation S.14 can now be inverted analytically to yield the real time FDAP, 
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where D =  2
/D is the characteristic diffusion time of a molecule over the photoactivation 

region. 

 

Effective diffusion 

 

When the average time before a molecule is bound while diffusing across the photoactivation 

region is much shorter than D, i.e., 1/k
*

on << D, the system can be considered as being in the 

effective diffusion mode. It has been shown in (18) that by introducing a new variable 

p=pD(1 + k
*

on/koff) = peff and redefining FDAPnew(p) = FDAP(p)/eff, the full numerical 

solution can be reduced to one similar to the pure diffusion case but with the characteristic 
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time equal to eff. Doing so in case of Eq. 4 results in 
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Reaction dominant 

 

A constraint diametrically opposite to the previous one brings us to a regime called reaction 

dominant. In this regime D is much shorter than the average association time of a molecule, 

i.e., 1/k
*

on >> D. Diffusion and binding act on different time scales and are hence separable. 

We thus decompose Eq. 4 into 
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It reflects a FDAP signal which is strongly governed by the dissociation rate of molecules. 

The Laplace transform is then easily found: 
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Hybrid behaviour 

 

Sprague et al. (18) have also found a somewhat intermediate solution between the effective 

diffusion and reaction dominant regimes where the majority of molecules are bound (k
*

on/koff 

>> 1) but diffusion and binding act on a comparable time scale (1/k
*

on ~ D). Applying the 

same procedure to Eq. 4 we obtain 
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where (q)
2
  k

*
onD p/(p + koff). 

 

Derivation of the solution to the diffusing-bound-state model 

 

Equation 5 also describes diffusion and first-order-reaction kinetics of a species in a 

homogeneous cylindrical space. However, there is non-zero diffusion in both free and bound 

states. The initial conditions are the same as for the system Eq. 2 (see the derivation above). 

Applying the same strategy for finding the solution to Eq. 5 one obtains 
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where the parameters q
2
 = (p + k

*
on)/DF, 2

 = koff/DF, 2
 = k

*
on/DB, 2

 = (p + koff)/DB, V1(z) = 

c(z,t=0)/DF, and V2(z) = s(z,t=0)/DB. The particular solution within the photoactivation region 

can be found by setting the derivatives in Eqs. S.21 and S.22 to zero, hence 
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within the photoactivation region and zero elsewhere. We then consider the homogeneous 

problem to Eqs. S.21 and S.22 
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This is a simple matrix ordinary differential equation with the defining matrix A composed of 

the constant coefficients on the right sides of Eqs. S.25 and S.26. The fundamental solution to 

this system can be given in terms of the eigenvalues and eigenvectors of A (57), namely 
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where M1,2 and N1,2 are arbitrary constants to be found by using the matching condition at z = 

. The eigenvalues 1,2 and the eigenvectors G1,2 of the matrix A are expressed as follows 
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Combined with the partial solutions, Eqs. S.23 and S.24, and averaged over the 

photoactivation region according to Eq. S.12, the Laplace transform for the FDAP signal 

generalizes to Eq. 6, whereby 
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 Now let us show that the pure and effective diffusion approximations are still 

applicable despite non-zero diffusion of molecules in the bound state. In case of pure diffusion 

the derivation is trivial. Indeed, since the majority of molecules are free and only infrequently 

interact with their binding sites, one can eliminate the reaction terms on the right side of Eq. 

5. FDAPs are now to be found separately for the free (fast) and bound (slow) fractions. The 

resulting FDAP is then as follows 

),(]TB[)(]TF[)( tFDAPtFDAPtFDAP BeqFeqpure   (S.33) 

where FDAPF,B(t) are given by Eq. S.15 with the diffusion constants exchanged by DF and 

DB, respectively. Bearing in mind that the pure diffusion approximation is valid only when 
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[TF]eq >> [TB]eq, Eq. S.33 simplifies even more, namely to 

).()( tFDAPtFDAP Fpure   (S.34) 

Note the difference between Eqs. S.33 and a simple two-component expression 

),()1()()( tFDAPtFDAPtFDAP BFpure    (S.35) 

where  and 1- are the fractions of molecules diffusing in the states TF and TB, respectively. 

In this case  is an independent fit parameter and does not depend on the reaction rates. 

Equation S.35 hence cannot be reduced to Eq. S.34 since the species TF and TB diffuse 

independently. 

 In case of effective diffusion the binding equilibrium establishes instantaneously so 

that it can be assumed [TB]  (k
*

on/koff)[TF] for every time moment at every spatial position in 

the medium. Merging Eqs. 5A and 5B and expressing [TB] in terms of [TF] as mentioned 

before, one obtains 
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where the value before 
2
c is constant and now considered as an effective diffusion 

coefficient. The resulting FDAP is then given by Eq. S.16 with the only difference being the 

new effective diffusion constant from Eq. S.36. 

 

Monte Carlo simulations 

 

 (a) To ensure the absence of the longitudinal diffusion inhibition by the MT network 

we simulated the diffusion of tau by Monte Carlo simulations. The simulation space was 

defined as a tube of radius R = 500 nm. The tube was not restricted in the axial direction. MT 

packing was provided by NMT parallel MTs, each of radius RMT = 12.5 nm (as depicted in Fig. 

2, middle), with the MT-MT distance (RMT-MT) equal to ~70 nm. The number of MTs, and 

therewith the volume fill factor , was varied but did not exceed the percolation threshold set 

by the effective medium approach ( = 0.5). At the initial moment (t = 0), 1000 particles were 

randomly placed within the photoactivation region of 4 µm in length ( = 2 µm) so that none 

of them was in the MT phase. Once the MT topology and the molecular ensemble were set, 

the time loop was started. The time step, t, was equal to 1 µs. At each time step 

displacements x, y and z for each particle were generated as normally distributed random 

numbers with the standard deviation equal to tD2 . Reflection boundary conditions at the 

outer boundary of the simulation space as well as at the MT surface were imposed. The 

abovementioned procedure was iterated for 30×10
6
 time steps (30 s). 

 (b) We also performed Monte Carlo simulations to validate the simplified solutions to 

the kinetic model (Eq. 2). We assumed a homogeneous distribution of tau-binding sites (see 

Fig. 2, left). While defining the molecular ensemble at t = 0, each particle had a probability 

k
*

on/(k
*

on + koff) of being bound and a probability koff /(k
*

on + koff) of being free. At each time 

step, each free particle could bind with a probability 1 – exp(–k
*

ont), and each bound particle 

could unbind with a probability 1 – exp(–kofft). Once the free and bound populations were 

defined, the random displacements x, y and z for the free population were generated. 

Reflection boundary conditions only at the outer boundary were imposed. The procedure was 

again iterated for 100×10
6
 time steps (100 s). The simulations were repeated for different 

(k
*

on, koff) values. 

 In both cases the normalized FDAP for each time step signal was calculated by 

counting the number of particles within the photoactivation region, z[-,], and normalizing 
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it to the total number of particles. 

 

Calculation of the volume fill factor of MTs 

 

We calculated the upper bond for the volume fill factor of MTs (each of radius RMT), max, 

packed in a cylindrical cellular process with a circular cross-section (of radius R). Due to the 

parallel orientation of MTs within the cellular process, the 3D problem is equivalent to a 2D 

packing problem, where the goal is to arrange NMT circles in a larger circle so that their 

common radius is maximal. Solutions to this problem have been computed for various NMT 

(58, 59). One important parameter, while computing the optimal packing, is the density , i.e. 

the ratio of total area occupied by the small circles to that of the larger one. Since in our case 

the radius of MTs is fixed, one needs to rescale  with respect to the actual area occupied by a 

MT cross-section in order to relate it to the volume fill factor of MTs. Hence, 

,
2

2

max

MTMT

MT

R

R



  (S.37) 

where RMT-MT is the minimal separation between the MT centers. 

 

Supporting Figures 

 

 
FIGURE S1 Validation of the simplified solutions through Monte Carlo simulations of 

FDAP transients. Numerically simulated FDAP curves (gray circles,  = 2 µm) were fitted 

by each of the simplified solutions from Table 1. For pure diffusion and effective diffusion 

there was only one fit parameter, namely D (Deff = D/(1 + k
*

on/koff) in case of effective 

diffusion) that was varied. For hybrid behaviour and reaction dominant the parameter D was 

fixed while fitting, and only the reaction constants were varied. As expected, each FDAP 
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transient was well described only by the approximation of the same name. Fits are depicted 

with red lines. (A) The FDAP transient was computed so that k
*

on << koff , which corresponded 

to pure diffusion. The pure diffusion fit resulted in D  10.7 µm
2
/s. (B) The FDAP transient 

was computed so that D >> 1/k
*

on, which corresponded to effective diffusion. The effective 

diffusion fit resulted in k
*

on/koff  1.02. (C) The FDAP transient was computed so that D ~ 

1/k
*

on but k
*

on >> koff, which corresponded to hybrid behaviour. The hybrid behaviour fit 

resulted in k
*

on  0.8 s
-1

 and koff   0.009 s
-1

. (D) The FDAP transient was computed so that D 

<< 1/k
*

on, which corresponded to reaction dominant. The reaction dominant fit resulted in k
*

on 

 0.22 s
-1

 and koff   0.03 s
-1

. 

 

 
FIGFURE S2 Superposition of the validity areas of the simplified solutions to the 

diffusing-bound-state model. (A) A parametric area (black) was found where the full 

numerical solution of Eq. 2 (no bound diffusion) can well approximate the diffusing-bound-

state model (see the discussion section for details). The pure and effective diffusion validity 

areas cover a considerable part of the (k
*

on, koff)-space even at small values of DF (DF = 10 

µm
2
/s, DB = 0.3 µm

2
/s,  = 2 µm). (B) The area assigned to the full numerical solution of Eq. 

2 vanishes with the increase of DB. On the contrary, the coverage of the parametric space by 

the pure and effective diffusion validity areas increases as DB approaches DF (DF = 10 µm
2
/s, 

DB = 7 µm
2
/s,  = 2 µm). 
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